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can be seen as partBfin Fig. 1, so it will be shaped by the digital noise Time-Scaled Electrical Networks—Properties and

canceller for first order, as shown in (1), and will thereby be effectively Applications in the Design of
suppressed, too. Programmable Analog Filters
V. CONCLUSION Shanthi Pavan and Yannis Tsividis

The analysis of the sensitivity of TIM to coefficient mismatches
has been reviewed. A new cascade-parallel architecture of sigma—deli@stract—n this paper, we discuss the properties of time-scaled
ADC’s is proposed on the basis of TIM. Though the derivation procelectrical networks. Two specific ways of implementing scaled linear
dure of it is based on an example of (1-1) cascadedni$ assumed networks, constant-conductance scaling and constant-capacitance scaling,

) re reviewed along with their noise properties. We then extend time
to be four, the cascade-parallel architecture can be a general metﬁé‘ﬁng to nonlinear networks. We show that constant-capacitance scaled

to overcome the shortcoming of TIM through extensions. SimulatiQRworks are optimal with respect to noise and dynamic range, irrespective
results of the examples indicated that the new architecture effectivehthe scaling factor.

suppresses the influence of the noise introduced by coefficient misTndex Terms—Continuous time, fiter, nonlinear networks, pro-
matches, while retaining the speed advantages of TIM. In additiongfammable.

turned out to be quite simple. Thus, it can be a good approach to im-

plement TIM in practical applications.
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Throughout this paper, we discuss only (trans)conductance-capac-

itance networks, due to their significance in practical filter designs
(for example, the disk-drive-read channel application). Extension to
activeRC networks is easy and is not considered in this work. Two
methods for realizing time (frequency-response) scaled networks are
(Fig. 2) [1] the following.

1) Constant-capacitance scaling: multipyl conductances and
transconductances by, while keeping all capacitors un-
changed.

2) Constant-conductance scaling: multiplil capacitors by
1/«, while keeping all conductances and transconductances
unchanged.

The above two scaling techniques are not the only possibilities. For
instance, one could easily think of a strategy where all conductances are
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Fig. 3. Noise model for the conductances and transconductors.

Fig. 1.k Definition of time scaling. (a) Original network. (b) Time-scaledlg. We denote the transfer function framy to v, asHi.(f). We can
network.
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Fig. 2. lllustration of constant-capacitance and constant-conductance scaling Suo(f) = [Hio(f/a)|" - "G 3)
for a general linear (trans)conductance-capacitance network. Left: Original el
network. Right top: Constant-capacitance scaled network. Right bottom:
Constant-conductance scaled network. - oo
= [ S
9]
[~ o 4kT
scaled by,/« while all capacitors are scaled qul/a. Only constant- o /0 [Hro(f /)l aGh af
conductance and constant-capacitance scaling are dicussed in this work ART [ 9
in view of their practical significance. A [Hio(f/e)]”d(f/a). )

In Section II, we review the noise properties of scaled networks. From (1) and (3), we get
Section Ill, we extend the concept of time scaling to (trans)conduc-
tance-capacitance networks that are nonlinear. Section IV considers the Suo(f) = l5no(f/a)- (5)
distortion properties of weakly nonlinear time-scaled networks. In Sec- a '
tion V, we prove that constant-capacitance scaling results in an opti
implementation of programmable continuous-time filters. Section
contains the conclusions of this work.

(?Taolmparing (4) and (2), we see that

02, = 3, (6)
Following the same reasoning as above and utilizing power spectral
density superposition, it is easy to extend the results to multiple inde-
In this section, we review the noise properties of constant-condymendent noise sources and conclude thatintegrated output noise
tance and constant-capacitance scaled networks [2], [3]. Similar rgt@wer of a constant-capacitance scaled network is independent of the
tions have been derived for actiRE networks [4]. Here, we give the scaling factora.
formulae for (trans)conductance-capacitance networks. This will facil- Relations for the integrated output noise and noise spectral density
itate the proof of optimality of constant-capacitance scaling in Sefor constant-conductance scaled networks can be derived in an analo-
tion IV. Only white noise is considered in this paper. Let us assung®us manner. It can be shown that the integrated output noise power of
that the noise of every transconductance and conductance can be aegenstant-conductance scaled network is directly proportional to the
resented by the models shown in Figk3s the Boltzmann's constant scaling factorv. The noise properties of constant-capacitance and con-
andT is the absolute temperatung is the excess noise factor of thestant-conductance scaled networks are summarized in Table I.
transconductor. LeH (f), Sno(f) andvZ, be the original network's  As stated, a filter designed using constant-capacitance scaling prin-
frequency response, output noise power spectral density, and outgptes will have the same root mean square (RMS) output noise irre-
noise power, respectively. spective of its bandwidth, whereas in the case of constant-conductance
Consider Fig. 4(a), where we isolate a single noise sourcdrom  scaling, the total noise power varies with the scaling factde now
the network. We are interested in finding its contribution to the outpabnsider a programmable filter, with settable between the values of
noise spectral densit§..(f) and the integrated output noise voltagel anda.,ax, Wheream.. » 1. If the design of this filter is based on

Il. NOISE PROPERTIES OFSCALED NETWORKS (A REVIEW)
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Fig. 4. Noise properties of constant-capacitance scaled networks. (a) Origihig@. 5. Model for nonlinear (trans)conductors and capacitors.
network. (b) Constant-capacitance scaled network. (c) Constant-conductance

scaled network. . . .
A typical equation for thétth node of the network will be of the form

A2 1 3 fors a0, (0)

TABLE | D Crp(wn(t) = vy (1))
NOISE PROPERTIES OFSCALED NETWORKS >

Parameter Original | Constant Capaci Constant Cond

+ ngu(vk(t) —v.(t)) =0, kthnode (7)

Network | Scaled Network | Scaled Network

and assuming that the inpui(#) is connected to node 1

Frequency Response H(f) H(f/a) H(f/a)
Output Noise Spectral Density | Syo(f) 18o(f/a) Sno(f/a) v () = v (t). (8)
Output Noise Power vZ, vZ, av?,

Let us replace in these equations byt. We obtain

d(vi(at) — vp(at))
dot

Z Crp(vr(at) — v, (at))

constant-conductance scaling, it must be such that the filter meets the
noise specification at the setting= amax. AS a result, the filter will
be grossly overdesigned at lower settingsvof

In contrast to this, if the programmabile filter is designed using con- ;
stant-capacitance scaling, the output noise will be independent of the + Y gralve(at) = vu(at)) = 0, kthnode ©)
scaling factor (Table I). Thus, if the filter is designed optimally for one u
setting ofa, it will remain optimal for all other settings, and no overdegzng
sign will be needed.

It has been shown elsewhere [2] that the output noise power is in- vi(at) = viat). (10)
versely proportional to the total filter capacitance. Combining this fact
with the above observations, it is easy to see that a constant-condaguations (9) and (10) can be rewritten as
tance programmable filter will need,.. times more capacitance than

+ 3 fare(vglat),vn(at))

a,”

a constant-capacitance design. This is why programmable filters should 3 Crp(vr(at) — vplat)) d(ve(at) — vp(at))
be designed using constant-capacitance scaling. It can also be shown P @ dt

that, although the two filters will have the same total power dissipa- + Zﬁ i (vg(at), v, (at))

tion at the most wideband setting, in the constant-capacitance case, e R

power dissipation will decrease ass decreased, whereas in the con-
stant-conductance case it will remain constant, independent of + Zg“"'('l"‘(at) —vu(at)) =0, kthnode 1)

[Il. TIME SCALING IN NONLINEAR NETWORKS
vi(at) = vi(at). (12)
The concepts of frequency response and transfer function do not
exist in the common sense for nonlinear systems; hence, we can ddbtice that these are the equations one would get fottinaode of the
talk about “time scaling.” Consider the case when the (trans)condumetwork of Fig. 6(c), where all the (trans)conductances are the same as
tors and capacitors are nonlinear. The input—output relations for nanthe original network, while all the capacitors have been scaled by the
linear transconductors, conductors, and capacitors are written as shfmator1 /o and when the network is excited by an inputt) = v;(«t).
in Fig. 5. Consider now a general network consisting of these eleme¥ies refer to this as the “constant-conductance” scaled network. Both
shown in Fig. 6(a). We can use the modified nodal analysis (MNA) fothese networks can be solved using the MNA formulation. Since all
mulation for writing the network equations [5]. voltages in the scaled network are time-scaled by a factare obtain
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Fig. 6. Constant-capacitance and constant-conductance scaling in nonline
networks. (a) Original network. (b) Constant-capacitance scaled network. (¢
Constant-conductance scaled network.

0.08
the following, as in the linear case: if an input(t) to the original ‘ : : :
network produces an outpul;(t), an inputﬁ,;(t) - 1/,,:(0:75) applied 2008k f RN ......... ............
to the scaled network produces an outputit) = v,(at). Note that 2 : : o “fupSetat00MHz
the scaled network must have the same set of initial conditions as tr agak--- ¢/ i\ TP A\ N e AT
: : Sogsetat 174 MHz

unscaled network for the above to hold.
Alternatively, (9) can be rewritten as

d(vi(at) — vp(at))

Z Crp(vi(at) — vp(at)) T aofdi i R g N e
P : :

+ 3" afur(vg(at). v (at)) P S SN S, AR SN S S—
q.r Iégequency {MH2)

+ Z agiy (vi(at) — ve(at)) =0, kth node (13)
- Fig. 8. Distortion simulations of a constant-capacitance scaled fourth-order

Butterworth filter.
i1 (at) = vi(at). 14 : ; ; ; z !

These equations are those that one would obtain for the network of F e ... ... Y on. W
6(b), where all the capacitors are the same as in the original netwo ] i/fsda :
while all conductors and transconductors have been scaled by the fai o § : _fMB“sg@.q;}QQM'IjIAz”__._‘E_m_”_‘m.é ____________ l
a. We refer to this as the “constant-capacitance” scaled network. As : : : : :

the constant-conductance case, an inp(¢) to the scaled network
results in an output, (at).

IV. DISTORTION IN WEAKLY NONLINEAR CONSTANT-CAPACITANCE
SCALED FILTERS

Fig. 7 shows two weakly nonlinear filters, with (b) the constant-ce 092 g
pacitance scaled version of (a). The network of Fig. 7(a) is excited | ' : : :
a sinewave of amplituda and frequency,. We express the output as

o_oj- : S -
a Fourier series : : : @

vo(t) = ZA” sin(nwet) + Br cos(nw,t). (15) % 02 0.4 06 0.8 1 12 14
n 3dB

Since the filter of Fig. 7(b) is a scaled version with a scaling fagtor Fig. 9. The distortion curves d%ig. 8 replotted with thex axis normalized
its output for an excitationt sin(aw,t) is to bandwidth.

Do(t) = volat) = ZA,, sin(naw,t) + By, cos(naw,t).

n

(16) amplitude, but a frequency afw,. Thus, if the original filter has a

worst-case THD of:% for an input tone of frequency, and amplitude
Observe that the Fourier coefficients of the output remain the same fbrthen the scaled filter will also have a worst-case THDR:%f when
both networks. This means that if the original filter has a total harmonéxcited by a sinewave of amplitudg but a frequencyw, . Therefore,
distortion (THD) of 2% when excited by a frequency,, the scaled the worst-case distortion of a scaled filter is independent of the scaling
filter will also have a THD ofr% when excited by a tone of the samefactor.
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For a more general periodic input,f(¢) is represented as a sumstant-capacitance scaled network is independent of the scaling factor.
of componentsy_ k. ox(t), where thep,, arenot necessarily har- Thus, aconstant-capacitance scalditter represents a very desirable
monically related(they could be intermodulation components, crosssituation, summarized below.

modulation components, or anything else), thiett) = v,(at) = 1) The output noise power is independent of the scaling factor.
>, kndn(at) for 4:(t) = vi(at). Therefore, the amplitudes of the  2) The worst-case distortion (and hence, the maximal signal level)
inter/cross modulation components (the) remain the same for the is independent of the scaling factor.

scaled network when the input signal is time scaled. 3) The dynamic range is independent of the scaling factor.

To verify our conclusions on the harmonlc distortion prope_rt|es of Notice that while there are many scaling strategies to maintain
scaled nonlinear networks, simulations were run on a device-le

CMOS impl . f . led fourth guency responsepnstant-capacitancsecaling keeps the dynamic
Implementation ora constant-capac!tance scaled fourth-or gﬁge constant, irrespective of the bandwidth. Hence, no overdesign is
Butterworth low-pass filter, whose bandwidth was programmab

f 60 to 350 MHz [61. The filter bandwidth 300 MH eded. If the original filter is designed optimally in terms of white
rom 60 to z _[ ]'_ el te_r andwidth was set to Znpise and distortion, then any constant-capacitance scaled version of it
and the total harmonic distortion in the output waveform was plott

Il also be optimal, irrespective of its frequency setting. In addition,

as a function of the input frequency. Then the bandwidth setting W@énstant-capacitance scaling lends itself to a design technique that is
changed to 174 MHz _and_ the abOYe proced_ur_e was re_peate(_:i aglaérharkably immune to effects of parasitic capacitances; the reader is
The results are shown in Fig. 8. In Fig. 9, thexis is normalized with  o¢o10 eisewhere [6] where a filter chip, programmable from 60 to
respect to the filter bandwidth setting for both the curves shown in F|§50 MHz, is presented.
8. As predicted by the theory, the two normalized distortion curves '

are in very good agreement. These are device-level simulations. The

absolute distortion levels are notimportant because they depend on the VI. CONCLUSION
accuracy of the transistor models used. What is of great significancewe have discussed some properties of time-scaled electrical net-

is that the distortion curves are nearly identical when normalized Works. We have shown analytically that constant-capacitance scaled

the bandwidth. To obtain accurate results, the simulator time-step &8s have noise, distortion, and dynamic range independent of the

forcibly set in inverse proportion to the bandwidth. This ensures th@éaling factor (not counting/ f noise sources). These observations

the simulator converges to .roughly th? same degree at the end q{a% been verified through simulation and experiments reported else-
time step regardless of the filter bandwidth. where [6]

V. DYNAMIC RANGE IN CONSTANT-CAPACITANCE SCALED FILTERS

. . . . . REFERENCES
Along with the noise properties of scaled networks discussed earlier

in this brief, the observation on distortion has important consequences?] ';V SEdéZ a"’:/”e‘:t(';-] ngkatg'rtiir Ig;’gry and Design: Active and Pas-
in filter design. If Fhe input S|.gnal toa f!lter Is very small,. the qutput 2] G. Groenewold, B. Mona, and B. Nauta, “Micropower analog filter de-
IS masked by the Intema| noise Of the fllter. If the |nput Slgnal IS Vel’y Sign”’ in Ana|og Circuit Des|gn Low Power’ Low Vo|tage |ntegrated
large, distortion effects setin. The dynamic range of the filter is defined Filters and Smart PowerR. J. van de Plassche, W. Sansen, and J. H.
as the ratio of the maximum output signal level permissible (with some[S] gU'IJESflt?]g E?’Z" BLOSTtOt?{ MAC:i |$|U'\;V6Tr, _193_5, DIE)‘- -73_-88&_; C it

; ; e ; . ivoulidis, L. Toth, and Y. P. Tsividis, “Noise in Gm-C filters,”
acceptable dlstortljon level) to_ the rrf'nnlmum output sng_nal (usuallly(;he IEEE Trans. Circuits Syst. Iol. 45, pp. 295302, Mar. 1998,
root mean square output noise). If a Constaht-capaCItance scaled n L. Toth, G. Efthivoulidis, V. Gopinathan, and Y. P. Tsividis, “General
work is used to implement a programmable filter, we have shown that ~ results for resistive noise in active RC and MOSFET-C filtetEEE
the integrated output noise power is constant, irrespective of the set  Trans. Circuits Syst. Jlvol. 42, pp. 785-793, Dec. 1995.
bandwidth. From our discussion above of time scaling in nonlinear cir- [5] I\-(b(rihl:\iég}a?/\/eiloiﬁrllagg E. Kubinear and Nonlinear Circuits New
cuits, we _conc_lude_d _that the maximum output S|gn<_’;1I level for a given [6] S.Pavan, Y. Tsividis, and K. Nagaraj, “A 60-350 MHz programmable
level of distortion is independent of the set bandwidth too. From the " * analog filter in a digital CMOS process,” presented at the Proc. European
above two statements, we conclude that the dynamic range of a con-  Solid-State Circuits Conf., Duisburg, Germany, Sept. 1999.



