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can be seen as part ofE in Fig. 1, so it will be shaped by the digital noise
canceller for first order, as shown in (1), and will thereby be effectively
suppressed, too.

V. CONCLUSION

The analysis of the sensitivity of TIM to coefficient mismatches
has been reviewed. A new cascade-parallel architecture of sigma–delta
ADC’s is proposed on the basis of TIM. Though the derivation proce-
dure of it is based on an example of (1-1) cascade andM is assumed
to be four, the cascade-parallel architecture can be a general method
to overcome the shortcoming of TIM through extensions. Simulation
results of the examples indicated that the new architecture effectively
suppresses the influence of the noise introduced by coefficient mis-
matches, while retaining the speed advantages of TIM. In addition, it
turned out to be quite simple. Thus, it can be a good approach to im-
plement TIM in practical applications.
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Time-Scaled Electrical Networks—Properties and
Applications in the Design of
Programmable Analog Filters

Shanthi Pavan and Yannis Tsividis

Abstract—In this paper, we discuss the properties of time-scaled
electrical networks. Two specific ways of implementing scaled linear
networks, constant-conductance scaling and constant-capacitance scaling,
are reviewed along with their noise properties. We then extend time
scaling to nonlinear networks. We show that constant-capacitance scaled
networks are optimal with respect to noise and dynamic range, irrespective
of the scaling factor.

Index Terms—Continuous time, filter, nonlinear networks, pro-
grammable.

I. INTRODUCTION

Continuous-time integrated filters need to be programmable over
wide frequency ranges for several applications, e.g., in the read channel
of hard disk drives. Such filters must maintain the relative shape of the
frequency response indentical, irrespective of the set bandwidth, while
maintaining adequate dynamic range. Approaches to the design of pro-
grammable filters are considered in this brief.

A. Time Scaling: Definition

We will discuss both linear and nonlinear networks. Since, in the
latter, the term “frequency response” does not have meaning in the strict
sense of the term, we will use the term “time scaling” rather than “fre-
quency scaling” throughout this paper.

Consider an initially relaxed networkN . For the time being, we
consider a single input, single output network. Let an arbitrary input
voltagevi(t) produce an output voltagevo(t). Further, let us assume
the existence of a network̂N satisfying the following condition: Any
input v̂i(t) = vi(�t) results in an output̂vo(t) = vo(�t). The only
restriction on� is that it be positive. Then, we call̂N the time-scaled
version ofN , with a scaling factor�. This is denoted in Fig. 1. When
N andN̂ are linear, scaling in time by� corresponds to scaling of the
frequency response of the network by1=�. The relative shape of the
magnitude response remains the same.

Throughout this paper, we discuss only (trans)conductance-capac-
itance networks, due to their significance in practical filter designs
(for example, the disk-drive-read channel application). Extension to
active-RC networks is easy and is not considered in this work. Two
methods for realizing time (frequency-response) scaled networks are
(Fig. 2) [1] the following.

1) Constant-capacitance scaling: multiplyall conductances and
transconductances by�, while keeping all capacitors un-
changed.

2) Constant-conductance scaling: multiplyall capacitors by
1=�, while keeping all conductances and transconductances
unchanged.

The above two scaling techniques are not the only possibilities. For
instance, one could easily think of a strategy where all conductances are
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(a)

(b)

Fig. 1. Definition of time scaling. (a) Original network. (b) Time-scaled
network.

Fig. 2. Illustration of constant-capacitance and constant-conductance scaling
for a general linear (trans)conductance-capacitance network. Left: Original
network. Right top: Constant-capacitance scaled network. Right bottom:
Constant-conductance scaled network.

scaled by
p
� while all capacitors are scaled by1=�. Only constant-

conductance and constant-capacitance scaling are dicussed in this work
in view of their practical significance.

In Section II, we review the noise properties of scaled networks. In
Section III, we extend the concept of time scaling to (trans)conduc-
tance-capacitance networks that are nonlinear. Section IV considers the
distortion properties of weakly nonlinear time-scaled networks. In Sec-
tion V, we prove that constant-capacitance scaling results in an optimal
implementation of programmable continuous-time filters. Section VI
contains the conclusions of this work.

II. NOISE PROPERTIES OFSCALED NETWORKS(A REVIEW)

In this section, we review the noise properties of constant-conduc-
tance and constant-capacitance scaled networks [2], [3]. Similar rela-
tions have been derived for active-RCnetworks [4]. Here, we give the
formulae for (trans)conductance-capacitance networks. This will facil-
itate the proof of optimality of constant-capacitance scaling in Sec-
tion IV. Only white noise is considered in this paper. Let us assume
that the noise of every transconductance and conductance can be rep-
resented by the models shown in Fig. 3.k is the Boltzmann's constant
andT is the absolute temperature.� is the excess noise factor of the
transconductor. LetH(f); Sno(f) andv2no be the original network's
frequency response, output noise power spectral density, and output
noise power, respectively.

Consider Fig. 4(a), where we isolate a single noise sourcevn1 from
the network. We are interested in finding its contribution to the output
noise spectral densitySno(f) and the integrated output noise voltage

Fig. 3. Noise model for the conductances and transconductors.

v2no. We denote the transfer function fromvn1 tovo asH1o(f). We can
write

Sno(f) = jH1o(f)j2 � 4kT
G1

(1)

v2no =
1

0

Sno(f)df

=
1

0

jH1o(f)j2 � 4kT
G1

df

=
4kT

G1

1

0

jH1o(f)j2 df: (2)

For the constant-capacitance scaled network [Fig. 4(b)], the relations
corresponding to (1) and (2) are

Ŝno(f) = jH1o(f=�)j2 � 4kT
�G1

(3)

v̂2no =
1

0

Ŝno(f)df

=
1

0

jH1o(f=�)j2 � 4kT
�G1

df

=
4kT

G1

1

0

jH1o(f=�)j2 d(f=�): (4)

From (1) and (3), we get

Ŝno(f) =
1

�
Sno(f=�): (5)

Comparing (4) and (2), we see that

v2no = v̂2no: (6)

Following the same reasoning as above and utilizing power spectral
density superposition, it is easy to extend the results to multiple inde-
pendent noise sources and conclude thatthe integrated output noise
power of a constant-capacitance scaled network is independent of the
scaling factor�.

Relations for the integrated output noise and noise spectral density
for constant-conductance scaled networks can be derived in an analo-
gous manner. It can be shown that the integrated output noise power of
a constant-conductance scaled network is directly proportional to the
scaling factor�. The noise properties of constant-capacitance and con-
stant-conductance scaled networks are summarized in Table I.

As stated, a filter designed using constant-capacitance scaling prin-
ciples will have the same root mean square (RMS) output noise irre-
spective of its bandwidth, whereas in the case of constant-conductance
scaling, the total noise power varies with the scaling factor�. We now
consider a programmable filter, with� settable between the values of
1 and�max, where�max » 1. If the design of this filter is based on
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(a)

(b)

(c)

Fig. 4. Noise properties of constant-capacitance scaled networks. (a) Original
network. (b) Constant-capacitance scaled network. (c) Constant-conductance
scaled network.

TABLE I
NOISEPROPERTIES OFSCALED NETWORKS

constant-conductance scaling, it must be such that the filter meets the
noise specification at the setting� = �max. As a result, the filter will
be grossly overdesigned at lower settings of�.

In contrast to this, if the programmable filter is designed using con-
stant-capacitance scaling, the output noise will be independent of the
scaling factor (Table I). Thus, if the filter is designed optimally for one
setting of�, it will remain optimal for all other settings, and no overde-
sign will be needed.

It has been shown elsewhere [2] that the output noise power is in-
versely proportional to the total filter capacitance. Combining this fact
with the above observations, it is easy to see that a constant-conduc-
tance programmable filter will need�max times more capacitance than
a constant-capacitance design. This is why programmable filters should
be designed using constant-capacitance scaling. It can also be shown
that, although the two filters will have the same total power dissipa-
tion at the most wideband setting, in the constant-capacitance case,
power dissipation will decrease as� is decreased, whereas in the con-
stant-conductance case it will remain constant, independent of�.

III. T IME SCALING IN NONLINEAR NETWORKS

The concepts of frequency response and transfer function do not
exist in the common sense for nonlinear systems; hence, we can only
talk about “time scaling.” Consider the case when the (trans)conduc-
tors and capacitors are nonlinear. The input–output relations for non-
linear transconductors, conductors, and capacitors are written as shown
in Fig. 5. Consider now a general network consisting of these elements
shown in Fig. 6(a). We can use the modified nodal analysis (MNA) for-
mulation for writing the network equations [5].

Fig. 5. Model for nonlinear (trans)conductors and capacitors.

A typical equation for thekth node of the network will be of the form

p

Ckp(vk(t)� vp(t))
d(vk(t)� vp(t))

dt
+

q;r

fqrk(vq(t); vr(t))

+
u

gku(vk(t)� vu(t)) = 0; kth node (7)

and assuming that the inputvi(t) is connected to node 1

v1(t) = vi(t): (8)

Let us replacet in these equations by�t. We obtain

p

Ckp(vk(�t)� vp(�t))
d(vk(�t)� vp(�t))

d�t

+
q;r

fqrk(vq(�t); vr(�t))

+
u

gku(vk(�t)� vu(�t)) = 0; kth node (9)

and

v1(�t) = vi(�t): (10)

Equations (9) and (10) can be rewritten as

p

Ckp(vk(�t)� vp(�t))

�

d(vk(�t)� vp(�t))

dt

+
q;r

fqrk(vq(�t); vr(�t))

+
u

gku(vk(�t)� vu(�t)) = 0; kth node (11)

v1(�t) = vi(�t): (12)

Notice that these are the equations one would get for thekth node of the
network of Fig. 6(c), where all the (trans)conductances are the same as
in the original network, while all the capacitors have been scaled by the
factor1=� and when the network is excited by an inputv̂i(t) = vi(�t).
We refer to this as the “constant-conductance” scaled network. Both
these networks can be solved using the MNA formulation. Since all
voltages in the scaled network are time-scaled by a factor�, we obtain
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(a)

(b)

(c)

Fig. 6. Constant-capacitance and constant-conductance scaling in nonlinear
networks. (a) Original network. (b) Constant-capacitance scaled network. (c)
Constant-conductance scaled network.

the following, as in the linear case: if an inputvi(t) to the original
network produces an outputvo(t), an inputv̂i(t) = vi(�t) applied
to the scaled network produces an outputv̂o(t) = vo(�t). Note that
the scaled network must have the same set of initial conditions as the
unscaled network for the above to hold.

Alternatively, (9) can be rewritten as

p

Ckp(vk(�t)� vp(�t))
d(vk(�t)� vp(�t))

dt

+
q;r

�fqrk(vq(�t); vr(�t))

+
u

�gku(vk(�t)� vu(�t)) = 0; kth node (13)

v̂1(�t) = vi(�t): (14)

These equations are those that one would obtain for the network of Fig.
6(b), where all the capacitors are the same as in the original network,
while all conductors and transconductors have been scaled by the factor
�. We refer to this as the “constant-capacitance” scaled network. As in
the constant-conductance case, an inputvi(�t) to the scaled network
results in an outputvo(�t).

IV. DISTORTION IN WEAKLY NONLINEAR CONSTANT-CAPACITANCE

SCALED FILTERS

Fig. 7 shows two weakly nonlinear filters, with (b) the constant-ca-
pacitance scaled version of (a). The network of Fig. 7(a) is excited by
a sinewave of amplitudeA and frequency!o. We express the output as
a Fourier series

vo(t) =
n

An sin(n!ot) +Bn cos(n!ot): (15)

Since the filter of Fig. 7(b) is a scaled version with a scaling factor�,
its output for an excitationA sin(�!ot) is

v̂o(t) = vo(�t) =
n

An sin(n�!ot) +Bn cos(n�!ot): (16)

Observe that the Fourier coefficients of the output remain the same for
both networks. This means that if the original filter has a total harmonic
distortion (THD) ofx% when excited by a frequency!o, the scaled
filter will also have a THD ofx% when excited by a tone of the same

(a)

(b)

Fig. 7. Distortion in weakly nonlinear filters. (a) Original filter. (b) Scaled
filter.

Fig. 8. Distortion simulations of a constant-capacitance scaled fourth-order
Butterworth filter.

Fig. 9. The distortion curves ofFig. 8, replotted with the axis normalized
to bandwidth.

amplitude, but a frequency of�!o. Thus, if the original filter has a
worst-case THD ofx% for an input tone of frequency!o and amplitude
A, then the scaled filter will also have a worst-case THD ofx% when
excited by a sinewave of amplitudeA, but a frequency�!o. Therefore,
the worst-case distortion of a scaled filter is independent of the scaling
factor.
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For a more general periodic input, ifvo(t) is represented as a sum
of components

n
kn�n(t), where the�n arenot necessarily har-

monically related(they could be intermodulation components, cross-
modulation components, or anything else), thenv̂o(t) = vo(�t) =

n
kn�n(�t) for v̂i(t) = vi(�t). Therefore, the amplitudes of the

inter/cross modulation components (thekn) remain the same for the
scaled network when the input signal is time scaled.

To verify our conclusions on the harmonic distortion properties of
scaled nonlinear networks, simulations were run on a device-level
CMOS implementation of a constant-capacitance scaled fourth-order
Butterworth low-pass filter, whose bandwidth was programmable
from 60 to 350 MHz [6]. The filter bandwidth was set to 300 MHz,
and the total harmonic distortion in the output waveform was plotted
as a function of the input frequency. Then the bandwidth setting was
changed to 174 MHz and the above procedure was repeated again.
The results are shown in Fig. 8. In Fig. 9, thex axis is normalized with
respect to the filter bandwidth setting for both the curves shown in Fig.
8. As predicted by the theory, the two normalized distortion curves
are in very good agreement. These are device-level simulations. The
absolute distortion levels are not important because they depend on the
accuracy of the transistor models used. What is of great significance
is that the distortion curves are nearly identical when normalized to
the bandwidth. To obtain accurate results, the simulator time-step was
forcibly set in inverse proportion to the bandwidth. This ensures that
the simulator converges to roughly the same degree at the end of a
time step regardless of the filter bandwidth.

V. DYNAMIC RANGE IN CONSTANT-CAPACITANCE SCALED FILTERS

Along with the noise properties of scaled networks discussed earlier
in this brief, the observation on distortion has important consequences
in filter design. If the input signal to a filter is very small, the output
is masked by the internal noise of the filter. If the input signal is very
large, distortion effects set in. The dynamic range of the filter is defined
as the ratio of the maximum output signal level permissible (with some
acceptable distortion level) to the minimum output signal (usually the
root mean squared output noise). If a constant-capacitance scaled net-
work is used to implement a programmable filter, we have shown that
the integrated output noise power is constant, irrespective of the set
bandwidth. From our discussion above of time scaling in nonlinear cir-
cuits, we concluded that the maximum output signal level for a given
level of distortion is independent of the set bandwidth too. From the
above two statements, we conclude that the dynamic range of a con-

stant-capacitance scaled network is independent of the scaling factor.
Thus, aconstant-capacitance scaledfilter represents a very desirable
situation, summarized below.

1) The output noise power is independent of the scaling factor.
2) The worst-case distortion (and hence, the maximal signal level)

is independent of the scaling factor.
3) The dynamic range is independent of the scaling factor.

Notice that while there are many scaling strategies to maintain
frequency response,constant-capacitancescaling keeps the dynamic
range constant, irrespective of the bandwidth. Hence, no overdesign is
needed. If the original filter is designed optimally in terms of white
noise and distortion, then any constant-capacitance scaled version of it
will also be optimal, irrespective of its frequency setting. In addition,
constant-capacitance scaling lends itself to a design technique that is
remarkably immune to effects of parasitic capacitances; the reader is
referred elsewhere [6] where a filter chip, programmable from 60 to
350 MHz, is presented.

VI. CONCLUSION

We have discussed some properties of time-scaled electrical net-
works. We have shown analytically that constant-capacitance scaled
filters have noise, distortion, and dynamic range independent of the
scaling factor (not counting1=f noise sources). These observations
have been verified through simulation and experiments reported else-
where [6].
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